这里记录了一些学习过程中遇到的数学证明

dnxd+1xn+1d | n \Lrarr x^d+1|x^n+1

充分性

即求证:

dnxd+1xn+1d|n \Rarr x^d + 1 | x^n +1

n=kdn = kd,有

xd1=(x1)(xd1++x+1)x^d-1 = (x-1)(x^{d-1} + \cdots + x + 1)

xn1=(x1)(xkd1++x+1)=(x1)(xd1++x+1)(x(k1)d++xd+1)=(xd1)(x(k1)d++xd+1)\begin{align*} x^n-1 &= (x-1)(x^{kd-1} + \cdots + x + 1) \\ &= (x-1)(x^{d-1} + \cdots + x + 1)(x^{(k-1)d} + \cdots + x^d + 1) \\ &= (x^d-1)(x^{(k-1)d}+ \cdots + x^d + 1) \end{align*}

证毕

必要性

即求证:

xd+1xn+1dnx^d+1 | x^n + 1 \Rarr d|n

n=kd+rn = kd+r,其中 $ 0 \leq r < d$,只需证 r=0r = 0

假设 $r \neq 0 $,有:

xn1=xkdxr1=(xkd1)xr+xr1=(xd1)(xkd1++x+1)xr+xr1\begin{align*} x^n-1 &= x^{kd} x^r - 1 \\ &= (x^{kd}-1) x^r + x^r-1 \\ &= (x^d-1)(x^{kd-1} + \cdots + x + 1)x^r + x^r-1 \end{align*}

也即 xn+1x^n+1xd1x^d-1 除的余式是 xr1x^r -1

因为 r0r \neq 0,所以 xr10x^r -1 \neq 0
与条件矛盾,假设不成立

所以 xd+1xn+1dnx^d+1 | x^n + 1 \Rarr d|n 证毕